Analisi citomorfologica di fibrina ricca di piastrine liquida prodotta con centrifuga ad angolo fisso DUO (Process, Francia) per l’uso nella terapia rigenerativa delle ulcere cutanee

Ricevuto: 3 giugno 2023
Accettato: 16 ottobre 2023
Published: 14 dicembre 2023
Abstract Views: 150
PDF (English): 38
Supplementary Materials (English): 14
PDF: 66
Materiali Supplementari: 18
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Autori

La fibrina ricca di piastrine (PRF) liquida è un concentrato piastrinico di seconda generazione iniettabile ricco di piastrine, leucociti e fibrinogeno ottenuto per centrifugazione del sangue autologo. Lo scopo di questo studio è analizzare il contenuto cellulare e di fibrinogeno di vari tipi di PRF Liquido (C-PRF liquid, A-PRF liquid, i-PRF, fibrinogeno liquido) ottenuti con l’uso di centrifuga ad angolo fisso DUO (PRF DUO, Process per PRF, Nizza, Francia) con provette Fibrinogeno Liquido (FL) Vacumed (cod. 44909) e/o provetta originale S-PRF Sticky. È stato riscontrato un accumulo medio di Trombociti di quasi 1,5 volte rispetto al sangue intero. A causa dell’elevata concentrazione di Piastrine, i PRF-Liquid contengono importanti fattori di crescita per la rigenerazione tissutale. In questo studio preliminare abbiamo evidenziato che il tipo di PRF Liquido a maggiore contenuto di piastrine (126.3% vs. 109.5%), monociti (127.6% vs. 84.6%), con un sufficiente contenuto di linfociti (192.9% vs. 242.1%) e granulociti neutrofili (64.6% vs. 64.8%) e di fibrinogeno (67.9% vs. 87.3%), è il i-PRF (700 rpm×5 min) ottenuto con provetta Vacumed FL (cod. 44909) con differenze statisticamente non significative rispetto al sangue intero, mentre è maggiore il contenuto di Linfociti e Fibrinogeno presente in i-PRF (700 rpm×5’) ottenuto con provetta PRF-S-Sticky. Molto minore, nel confronto, risulta il contenuto di cellule e fibrinogeno ottenuto con i due metodi di preparazione del PRP. Ciò indica che il PRF liquido più adatto ad essere utilizzato in vari casi di rigenerazione dei tessuti come l’estetica del viso, l’iniezione intrarticolare, l’iniezione periulcerativa, etc. è il i-PRF (700 rpm×5 min) ottenuto con provetta Vacumed FL.

Dimensions

Altmetric

PlumX Metrics

Downloads

I dati di download non sono ancora disponibili.

Citations

Shao Z, Lyu C, Teng L, et al. An Injectable Fibrin Scaffold Rich in Growth Factors for Skin Repair. Biomed Res Int 2021:8094932. DOI: https://doi.org/10.1155/2021/8094932
Singh D, Rai V, Agrawal DK. Regulation of Collagen I and Collagen III in Tissue Injury and Regeneration. Cardiol Cardiovasc Med 2023;7:5-16. DOI: https://doi.org/10.26502/fccm.92920302
Crisci A, Crisci M. Second-Generation Platelet Concentrates (PRFs): Estimation of Cellular Content. Biointerface Res Appl Chem 2022;12:4747-54, DOI: https://doi.org/10.33263/BRIAC124.47474754
Crisci A, De Crescenzo U, Crisci M. Platelet-Rich Concentrates (L-PRF, PRP) in Tissue Regeneration: Control of Apoptosis and Interactions with Regenerative Cells. J Clin Mol Med 2018;1:5-2. DOI: https://doi.org/10.15761/JCMM.1000116
Karimi K, Rockwell H. The Benefits of Platelet-Rich Fibrin. Facial Plast Surg Clin North Am 2019;27:331-40. DOI: https://doi.org/10.1016/j.fsc.2019.03.005
Castro AB, Andrade C, Li X, et al. Impact of g force and timing on the characteristics of platelet-rich fibrin matrices. Sci Rep 2021;11:6038. DOI: https://doi.org/10.1038/s41598-021-85736-y
Rattanasuwan K, Rassameemasmaung S, Kiattavorncharoen S, et al. Platelet-rich plasma stimulated proliferation, migration, and attachment of cultured periodontal ligament cells. Eur J Dent 2018;11:192-5. DOI: https://doi.org/10.4103/ejd.ejd_255_17
Miron R, Chai J, Zhang P, et al., A novel method for harvesting concentrated platelet-rich fibrin (C-PRF) with a 10-fold increase in platelet and leukocyte yields. Clin Oral Investig 2020;24:2819-28. DOI: https://doi.org/10.1007/s00784-019-03147-w
Kargarpour Z, Panahipour L, Miron RJ, Gruber R. Fibrinogen Concentrations in Liquid PRF Using Various Centrifugation Protocols. Molecules 2022;27:2043. DOI: https://doi.org/10.3390/molecules27072043
O'Connell SM. Safety issues associated with platelet-rich fibrin method. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103:587-93. DOI: https://doi.org/10.1016/j.tripleo.2007.03.017
Crisci A, Barillaro MC, Lepore G, Cardillo F. L-PRF Membrane (Fibrin Rich in Platelets and Leukocytes) and Its Derivatives (A-PRF, i-PRF) are Helpful as a Basis of Stem Cells in Regenerative Injury Treatment: Trial Work on the Horse. Int Blood Res Rev 2020;10:1-14. DOI: https://doi.org/10.9734/ibrr/2019/v10i230117
Pietruszka P, Chruścicka I, Duś-Ilnicka I, Paradowska-Stolarz A. PRP and PRF-Subgroups and Divisions When Used in Dentistry. J Pers Med 2021;11:944. DOI: https://doi.org/10.3390/jpm11100944
Zwittnig K, Kirnbauer B, Jakse N, et al. Growth Factor Release within Liquid and Solid PRF. J. Clin. Med 2022;11:5070. DOI: https://doi.org/10.3390/jcm11175070
Bucalossi M, Mariani F. Mononucleate da sangue periferico autologhe da filtrazione selettiva per il trattamento delle lesioni croniche dell'arto inferiore. Risultati a 4 anni. Ital J Wound Care 2021;5. DOI: https://doi.org/10.4081/ijwc.2021.69
Jaipersad A, Lip G, Silverman S, et al. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 2014;63:1-11. DOI: https://doi.org/10.1016/j.jacc.2013.09.019
Lopes-Coelho F, Silva F, Gouveia-Fernandes S, et al. Monocytes as Endothelial Progenitor Cells (EPCs), Another Brick in the Wall to Disentangle Tumor Angiogenesis. Cells 2020;9:107. DOI: https://doi.org/10.3390/cells9010107
Serafini G, Lopreiato M, Lollobrigida M, et al. Platelet rich fibrin (PRF) and its related products: biomolecular characterization of the liquid fibrinogen. J Clin Med 2020;9:1099. DOI: https://doi.org/10.3390/jcm9041099
Przadka P, Kiełbowicz Z, Skrzypczak P. Autogenne osocze bogatopłytkowe—Rodzaje, sposoby aktywacji i zastosowanie. Med Weter 2016;72:403-7. DOI: https://doi.org/10.21521/mw.5539
De Almeida Barros Mourrao CF, Valiense H, Melo ER, et al. Obtention of injectable platelets rich-fibrin (i-PRF) and its polymerization with bone graft: tecnical note. Rev Col Bras Cir 2015;42:421-3. DOI: https://doi.org/10.1590/0100-69912015006013
Sneha K, Rani AJ, Chandra RV, et al. The G‑force conundrum in platelet‑rich fibrin generation: Management of a problem hidden in plain sight. Contemp Clin Dent 2022;13:150-5. DOI: https://doi.org/10.4103/ccd.ccd_830_20
Pavlovic V, Ciric M, Jovanovic V, et al. Platelet-rich fibrin: Basics of biological actions and protocol modifications. Open Med (Wars) 2021;16:446-54. DOI: https://doi.org/10.1515/med-2021-0259
Handagama P, Scarborough RM, Shuman MA, Bainton DF. Endocytosis of fibrinogen into megakaryocyte and platelet alpha-granules is mediated by alpha IIb beta 3 (glycoprotein IIb-IIIa). Blood 1993;82:135-8. DOI: https://doi.org/10.1182/blood.V82.1.135.bloodjournal821135
Ragunanthan N, Anchana Devi C, Hemavani V. A novel approach of harvesting concentrated plasma-rich fibrin (PRF) with increased platelet count. J Med Res Innov 2022;6:1-8.
Castro AB, Cortellini S, Temmerman A, et al. Characterization of the Leukocyte- and Platelet-Rich Fibrin Block: Release of Growth Factors, Cellular Content, and Structure. Int J Oral Maxillofac Implants 2019;34:855-64. DOI: https://doi.org/10.11607/jomi.7275
Crisci A, Benincasa G, Crisci M, Crisci F. Leukocyte Platelet-Rich Fibrin (L-PRF), a new biomembrane useful in tissue repair: basic science and literature review. Biointerface Res Appl Chem 2018;8:3635-43.
Crisci A, Kawase T, D’Adamo R, Crisci M. Experimental research on a technique for quantification of platelets and leukocytes in second-generation platelet concentrates. Int J Curr Med Pharma Res 2019;5:4792-9.
Crisci A, Crisci M, Flagiello F. Second generation solid platelet concentrates (L-PRF, A-PRF): morphometric characteristics. Experimental research on the horse. Ame J Eng Res (AJER) 2022;11:107-17.
Crisci M, Crisci A. Estimation of Cellular Content in Second-Generation Solid Fibrin Concentrates (PRFs). Cutting Edge Res Biol 2023;4:52-64. DOI: https://doi.org/10.9734/bpi/cerb/v4/17885D
Husakova J, Bem R, Fejfarova V, et al. Factors Influencing the Risk of Major Amputation in Patients with Diabetic Foot Ulcers Treated by Autologous Cell Therapy. J Diabetes Res. 2022;3954740. DOI: https://doi.org/10.1155/2022/3954740
Rehak L, Giurato L, Meloni M, et al. The Immune-Centric Revolution in the Diabetic Foot: Monocytes and Lymphocytes Role in Wound Healing and Tissue Regeneration — A Narrative Review. J Clin Med 2022;11:889. DOI: https://doi.org/10.3390/jcm11030889
Ragghianti B, Berardi BM, Mannucci E, Monami M. Autologous Peripheral Blood Mononuclear Cells in Patients with Small Artery Disease and Diabetic Foot Ulcers: efficacy, safety and economic evaluation. J Clin Med 2023;12. DOI: https://doi.org/10.20944/preprints202305.1171.v1

Come citare

Crisci, M., Lepore, G., Feleppa, F., Crisci, A., & Flagiello, F. (2023). Analisi citomorfologica di fibrina ricca di piastrine liquida prodotta con centrifuga ad angolo fisso DUO (Process, Francia) per l’uso nella terapia rigenerativa delle ulcere cutanee. Italian Journal of Wound Care, 7(3). https://doi.org/10.4081/ijwc.2023.103

Articoli simili

1 2 > >> 

Puoi anche Iniziare una ricerca avanzata di similarità per questo articolo.